A low-frequency radio continuum study of the FRI radio galaxy 3C 31 with LOFAR

V. Heesen¹, J.H. Croston¹, R. Morganti², M.J. Hardcastle³, A.J. Stewart⁴, K.M. Hess², J.J. Harwood², E.M. Wilcots⁵ + LOFAR Surveys KSP (¹Southampton, ²ASTRON, ³Hertfordshire, ⁴Oxford, ⁵Madison)

Fun facts:

Below image is only 1/8 th of the LOFAR HBA field of view (~8 degrees) The gap between LBA and HBA is to avoid RFI from the FM frequencies (88–108 MHz)

The observations (LBA and HBA, 10 hr each) took about 1 Terabyte to store after compression in time and frequency

1 degree = 1.2 Mpc

3C 31 factfile: D = 73.3 Mpc / z = 0.0169Member of the 'Arp chain' of galaxies Low-power FR I radio galaxy

Strong spectral steepening indicates dominant radiation synchroton + IC) losses

LBA (30-87 MHz) antenna . . .

A.R. Offringa

Southern tail

 $\sqrt{B} \sim 3\mu G$ in the tails

LOFAR core ('superterp')

HBA (115–178 MHz) antenna tile

International LOFAR telescope

Southampton